FAA Composite Damage Tolerance and Maintenance Research & Training Initiatives

Presented to:

FAA/CACRC/EASA Workshop on Composite Damage Tolerance and Maintenance

By:

CURTIS DAVIES, Research Manager Federal Aviation Administration

CHARLES SEATON, Principal Investigator Edmonds Community College Date: 09 May 2007

Federal Aviation Administration

Overview of FAA Work in Damage Tolerance and Maintenance

- Damage Tolerance of Sandwich Panels*
- Repair of Composite Structures*
- Damage Tolerance of Fiber-Metal Laminates
- Damage Tolerance and Durability of Adhesively Bonded Composite Structures
- Composites Maintenance Training
 Initiatives
- *Details available at actlibrary.tc.faa.gov

Damage Tolerance of Sandwich Panels

- Full scale validation test underway
- Baseline undamaged panel tested
 - Not planned to fail
 - Additional damage applied to panel
 - 3" X 3" cross no failure
 - Extended Longitudinal 3" to 10" Failure above predicted load
- 10" hole in outer surface panel tested
 - Exceeded prediction
 - Local delamination
- Four additional panels in queue for testing
- Conclusions waiting completion of all tests

Repair of Composite Structures

Findings of Past Work

- All the repaired picture frame shear elements restored at least 90% of the average pristine strength except elements from one airline depot
- Field repair equivalent to prepreg repair
- Successful repairs require trained personnel
- Comparable results can be achieved by either a 0.25" or a 0.5" scarf overlap
- All the NDI field methods underestimated the damage size with the tap hammer being the least conservative
- Present Work
 - Effects of poor repair procedures on repair integrity
 - low pressure, low cure temperature, contaminants, pre-bond moisture

Damage Tolerance of Fiber-Metal Laminates

Damage Tolerance and Durability of Adhesively Bonded Composite Structures

- Developing basic knowledge of fracture of bonded joints.
 - Strength of single lap joint increases as bondline thickness increases
 - In DCB fracture test, toughness increases as bondline thickness decreases.
 - For thinner bondlines the interfacial stresses between the adhesive and adherend are higher than those for thicker bondlines.
 - CTOA for crack growth in adhesive is independent of bondline thickness
- supports use of more sophisticated computation-based design and analysis tools
 - failure process prediction, including adhesive plasticity
 - CTOA criterion simple to implement
 - VCCT and cohesive zone (cracked & un-cracked) now available in commercial codes
 - simulation tools can reduce time to conduct extensive environmental degradation tests
- addressing important issues of bondline thickness
 - quantify phenomena governing why "properties" seemingly depend on bondline thickness
 - definition and use of local failure criteria that are not bondline thickness dependent
- simpler test methods to obtain fracture and constitutive data
 - seeking to define simpler tests and remove necessity to collect data as function of bond thickness

Finite element model with cohesive elements & H₂O transport

Composites Maintenance Research and Training Initiatives

- Awareness course development update
 - Objectives and process
 - Outcomes: Three FAA Technical Center Reports
 - Content
 - Lessons Learned
- Future initiatives in training
 - Ideas from prior workshops and collaborations

Awareness Course Objectives

- Standardize an awareness course on Critical Composite Maintenance & Repair Issues
- Involvement: Achieve consensus with industry, academic and regulatory experts
 - Awareness course, not skill-building
 - Feedback: Series of workshops throughout 2004 to 2005

• Process

- Define framework by identifying 'terminal course objectives', or TCOs
- Establish safety theme by documenting 'safety messages'
- Develop content to populate TCOs as a tool for course developers

Awareness Course Process Overview

- Series of workshops to bring regulators and industry together on critical technical issues
 - May 2004 FAA/NRC workshop in Wash. DC Executive review of systematic, repair, NDI & training issues
 - August 2004: Beginning of EdCC cooperative agreement with FAA
 - November 2004 workshop to evaluate training needs
 - 2005 and 2006 FAA workshops to:
 - Review progress in establishing awareness training on critical issues
 - Solicit feedback from industry experts

• FAA research at JAMS COE

- Practical, introductory-level course for engineers, technicians and inspectors
- FAA/Edmonds C.C. Cooperative Agreement (2004-2007)
 - Short course (5-7 days), incl. labs, worth 4 credits
 - Current efforts include web-based, distance learning

Modified from presentations and seminars by L. Ilcewicz

Awareness Course Outcomes

- Goal: Standardize an awareness course on Critical Composite Maintenance & Repair Issues – 3 TC reports
 - 1. FAA Technical Center Report
 - Terminal Course Objectives (TCOs)
 - Safety messages
 - Narrative description of critical issues
 - Instructor's guide
 - Class design guidance
 - 2. FAA Technical Center Report: Training repair manual (TRM)
 - 3. FAA Technical Center Report: Course development
- Teaching points: Assessment tools to guide content (proposed to be AIR)

Awareness Course Process Establishing the Framework

• November 2004 workshop

- Over 60 experts from global community
- Professional facilitators provided by Boeing
- Step 1: Identify necessary skills for engineers, technicians and inspectors
 - 500+ skills identified
- Step 2: Categorize skills into categories summarized as course objectives
- Result: Course objectives (62 TCOs, later categorized into 13 terminal course modules). Additional information included
 - Obstacles to overcome
 - Alternative approaches
 - Parking lot issues (outside scope of awareness class)

Awareness Course Process

Final review by contributing experts

Awareness Course Process

Final review by contributing experts

FAA Composite Damage Tolerance and Maintenance Research & Training Initiatives 09 May 2007

Awareness Course Content

Participate in case team studies (lab)

FAA Composite Damage Tolerance and Maintenance Research & Training Initiatives 09 May 2007

Modified from presentations and seminars by L. Ilcewicz

Awareness Course Content Terminal Course Modules 3.1.4: Re

FAA Composite Damage Tolerance and Maintenance Research & Training Initiatives 09 May 2007

Awareness Course Development Lessons Learned

- Creating a standard course framework from diverse experts is possible!
 - Process of consensus
 - Feedback mechanisms
- Creating a standard course framework from diverse experts requires patience and considerable funding
- Synergy among dedicated industry, academia and regulatory organizations and people is high with sufficient interest
 - Must meet needs of organizations and individuals
 - Must fit with business interests of contributing organizations
- Collaborations have resulted in ideas for future training initiatives

Future Training Initiatives

- Basis: Any ideas below are subject to future discussions and business plan approval
- High training group
 - Integrate CACRC document content into training AIR, with assessment of maturity of knowledge base by originators
 - Expand training repair manual being proposed in Phase IV of awareness course development to beyond Chapter 51.0
- Medium training group
 - Training to ensure best practices in repair design
 - Establish training requirement for ramp personnel
 - Further develop 3 training AIRs currently under review around TCO framework in order to facilitate creation of certification standards
- Low training group
 - Design for reparability
 - Update SACMA video for ramp personnel
 - Develop 'case studies' based on actual events for encouraging student participation and improving retention
- Other
 - Develop a 'how to use' manual for CMH 17

